Proof of the Normal Scalar Curvature Conjecture
نویسنده
چکیده
where {e1, · · · , en} (resp. {ξ1, · · · , ξm}) is an orthonormal basis of the tangent (resp. normal) bundle, and R (resp. R) is the curvature tensor for the tangent (resp. normal) bundle. In the study of submanifold theory, De Smet, Dillen, Verstraelen, and Vrancken [5] made the following normal scalar curvature conjecture: Conjecture 1. Let h be the second fundamental form, and let H = 1 n traceh be the mean curvature tensor. Then
منابع مشابه
Normal Scalar Curvature Conjecture and its applications
In this paper, we proved the Normal Scalar Curvature Conjecture and the Böttcher–Wenzel Conjecture. We developed a new Bochner formula and it becomes useful with the first conjecture we proved. Using the results, we established some new pinching theorems for minimal submanifolds in spheres. Published by Elsevier Inc.
متن کاملA short proof of the maximum conjecture in CR dimension one
In this paper and by means of the extant results in the Tanaka theory, we present a very short proof in the specific case of CR dimension one for Beloshapka's maximum conjecture. Accordingly, we prove that each totally nondegenerate model of CR dimension one and length >= 3 has rigidity. As a result, we observe that the group of CR automorphisms associated with each of such models contains onl...
متن کاملSystolic Inequalities and Minimal Hypersurfaces
We give a short proof of the systolic inequality for the n-dimensional torus. The proof uses minimal hypersurfaces. It is based on the Schoen-Yau proof that an n-dimensional torus admits no metric of positive scalar curvature. In this paper, we give a short new proof of the systolic inequality for the ndimensional torus. Theorem 1. Let (T , g) be a Riemannian metric on the n-dimensional torus. ...
متن کاملOn the Scalar Curvature of Einstein Manifolds
We show that there are high-dimensional smooth compact manifolds which admit pairs of Einstein metrics for which the scalar curvatures have opposite signs. These are counter-examples to a conjecture considered by Besse [6, p. 19]. The proof hinges on showing that the Barlow surface has small deformations with ample canonical line bundle.
متن کاملScalar Curvature and Geometrization Conjectures for 3-Manifolds
We first summarize very briefly the topology of 3-manifolds and the approach of Thurston towards their geometrization. After discussing some general properties of curvature functionals on the space of metrics, we formulate and discuss three conjectures that imply Thurston’s Geometrization Conjecture for closed oriented 3-manifolds. The final two sections present evidence for the validity of the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007